Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations
نویسندگان
چکیده
منابع مشابه
Positive solutions of singular boundary value problems for second order impulsive differential equations
This paper is devoted to study the positive solutions of nonlinear singular two-point boundary value problems for second-order impulsive differential equations.The existence of positive solutions is established by using the fixed point theorem in cones. Mathematics Subject Classification: 34B15
متن کاملPositive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces
and Applied Analysis 3 To prove our main results, for any h ∈ C J, E , we consider the Neumann boundary value problem NBVP of linear impulsive differential equation in E: −u′′ t Mu t h t , t ∈ J ′, −Δu′|t tk yk, k 1, 2, . . . , m, u′ 0 u′ 1 θ, 2.3 where M > 0, yk ∈ E, k 1, 2, . . . , m. Lemma 2.4. For any h ∈ C J, E , M > 0, and yk ∈ E, k 1, 2, . . . , m, the linear NBVP 2.3 has a unique soluti...
متن کاملSolutions to Boundary-value Problems for Second-order Impulsive Differential Equations at Resonance
In this paper, we investigate the existence and uniqueness of solutions to boundary-value problems for second-order impulsive differential equations at resonance. To obtain these results, we apply fixed point methods and new differential inequalities.
متن کاملInitial value problems for second order hybrid fuzzy differential equations
Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia
متن کاملMultiple Positive Solutions for Singular Periodic Boundary Value Problems of Impulsive Differential Equations in Banach Spaces
and Applied Analysis 3 where f ∈ C J × E × E × E, E , Ik, Ik ∈ C E, E , and the operators T , S are given by Tu t ∫ t 0 k t, s u s ds, Su t ∫2π 0 k1 t, s u s ds, 1.5 with k ∈ C D,R , D { t, s ∈ R2 : 0 ≤ s ≤ t ≤ 2π}, k1 ∈ C J × J,R . By applying the monotone iterative technique and cone theory based on a comparison result, the author obtained an existence theorem of minimal and maximal solutions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2006
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2005.07.076