Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Positive solutions of singular boundary value problems for second order impulsive differential equations

This paper is devoted to study the positive solutions of nonlinear singular two-point boundary value problems for second-order impulsive differential equations.The existence of positive solutions is established by using the fixed point theorem in cones. Mathematics Subject Classification: 34B15

متن کامل

Positive Solutions for Neumann Boundary Value Problems of Second-Order Impulsive Differential Equations in Banach Spaces

and Applied Analysis 3 To prove our main results, for any h ∈ C J, E , we consider the Neumann boundary value problem NBVP of linear impulsive differential equation in E: −u′′ t Mu t h t , t ∈ J ′, −Δu′|t tk yk, k 1, 2, . . . , m, u′ 0 u′ 1 θ, 2.3 where M > 0, yk ∈ E, k 1, 2, . . . , m. Lemma 2.4. For any h ∈ C J, E , M > 0, and yk ∈ E, k 1, 2, . . . , m, the linear NBVP 2.3 has a unique soluti...

متن کامل

Solutions to Boundary-value Problems for Second-order Impulsive Differential Equations at Resonance

In this paper, we investigate the existence and uniqueness of solutions to boundary-value problems for second-order impulsive differential equations at resonance. To obtain these results, we apply fixed point methods and new differential inequalities.

متن کامل

Initial value problems for second order hybrid fuzzy differential equations

Usage of fuzzy differential equations (FDEs) is a natural way to model dynamical systems under possibilistic uncertainty. We consider second order hybrid fuzzy differentia

متن کامل

Multiple Positive Solutions for Singular Periodic Boundary Value Problems of Impulsive Differential Equations in Banach Spaces

and Applied Analysis 3 where f ∈ C J × E × E × E, E , Ik, Ik ∈ C E, E , and the operators T , S are given by Tu t ∫ t 0 k t, s u s ds, Su t ∫2π 0 k1 t, s u s ds, 1.5 with k ∈ C D,R , D { t, s ∈ R2 : 0 ≤ s ≤ t ≤ 2π}, k1 ∈ C J × J,R . By applying the monotone iterative technique and cone theory based on a comparison result, the author obtained an existence theorem of minimal and maximal solutions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2006

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2005.07.076